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The endofthiscourse askthe q Isthegradient avector
Thiscourse is usefulin2 aspects

GeneralRelativityneedsdiffgeobecauseofcurvedspaceandtime
Learnpowerfulandbeautifultoolstodescribephysicsinanygeometry

chapteronsomebasicmathematics

weneedsomemathstobeabletodefineamanifoldThursdayofnextweek

1.1Rnanditstopology

e
P.qntmi.mn isan n tuplecar an w̅faith Theideaofcontinuous isthatany2pointsinRnhavealineconnectingthemthat

ex Integersarenotcontinousdiscrete

The continuityofaspacedefines itstopologyHerewefocusonlocalvsglobaltopologyWeusedistancetodefinethetopology
RecallthedistancebetweenxJ̅ERis d xy exgift Can9nF

A neighborhood ofradiusrof It R isthesetofpointsst Nra jeRndctgar

Hiiiii ground

a

AsetofpointsinRharediscrete ifthereexists a neighbourhood abouteachpointthatcontainsnootherpoints

Asetof pointsSeRn is open xeS a neighbourhood all ins
Example S a a x b isopen

S a a a b is noteper because adoesnothavea neighbourhoodallwithins

Note Opensets cannotcontain boundrypoints
Rn hasthehasdorffproperty whichmeans thatany2points inRnhaveneighbourhoods thatdonotintersectd x ̅y inducesatopologyonRn whichsaysthatddetermines whether asetisopenornot

Opensetshavethefollowing properties
emptyset andthe wholesetS areopen
If 0202areopensetstheo.no isopen
Theunionofopensetsfinitenumber isopen

The topologyofa set consitsof thesetand all theopensets inthatset
Anydistancefunction inducesthenatural topology inRn

Forexample d x ̅g 4 a y.ttcary t Canyn has thesameinducedtopology as anyotherdistancefen
Youcandefine a topologywithoutdistance

81.2Mappings

Amap from MtoNassociates an element at Mto a uniqueyeN m ftp.M fu
Sis asubsetofMandtheimageofS underfis f S T Theinverse imageofT is f t S

f canbe manytoone If all pointsin f s havea unique inverse inSthen f is 1 1 and aonetoonemapft
called the inverseoff



example sina ismanytoone ble sina sin at21
Notation fMN fmapsman

f any fmapsatoy

Given f M NandgNPthen acompositionmapgotM P suchthat got a g fin If fMNthen
f defined points inM fmaps MintoN

If ego 91and In thing bijection If fhave aninversethen fish
eWAmap fM N is continuous at seeM ifanyopensetin N containingflacontainstheimageofanopensetM

containsa

f is continuous on Mifit is continuous seem

µ
Look at how thisis related tocontinousdefinedincalculus Recall fis continuous atno if e o 780 St

fix fladke if he2018

Wedefine d x x 12Not thenourdefinition canberewrittenasfollows fiscontinuousatx if d neighbourhoods

of fix contains theimageof a d neighbourhoodofno

dneighbourhood is
m n

Theorem fm Nis continuousiffthe inverse imageofeveryopensetisopen inM



Lectsepkoff.cat
AssignmentwillbereleasedtonightCrowdmarkLinkwillbesentout AMATH433

Today'sTopics RealAnalysis Grouptheory LinearAlgebra AlgebraofSquareMatrices

51.3RealAnalysis

f x is analytic at x No if it has aTaylorexpansionaboutnowitha nonzero radiusofconvergence
AnalyticfunctionsC whichis a subsetofC

Wewillassumefunctionsare analytic butwe'lloften say smooth C

1m Iff.ggf.ffffaff
mapthattakesafunction andyeilds anotherfunction

The commutatorof2 operators ABonf is AB f ABBAIFof ALBED BACH If AB 0 functionsthenAanBcommute

Example A E and Bate
AB f afa edgedate

a a hence A Bdontcommute

iiiif fiEe td
1.4 Grouptheory

AsetofelementsG witha binaryoperation is agroup if
G Associative x.ly ix goz

Gii Identity Feetsuchthat k e e x a x eG

Giii Inverse xeG a eG sit a x a x e

And is closedundertheoperation

A group I.fi f
mmutative

Example Setof permutationofnobjects
Rotationsofa regular polygon

Aside the Inverseisuniqueandthe identityisunique

Asubgroup is simply agroupthatis containedwithinthegroup

Example asetofpermutationofnobjects wherethefirstelementisunchanged
This is identicalsimilartothe permutationsofn1 objects isomorphism



51.5 LinearAlgebra
Aset is a vectorspace overR if it has abinary operation where it is an abeliangroup
and satisfiesthe followingunder Multiplication Let x ̅ JEV abeR

i
The identity underaddition is8 0

Example nxnmatrices
Continuousrealfunction on a a b

Dualspaces become critical in thenext2weeks

Notation weoften drop andwrite at by

A set R R an is Linerally dependent if a an a o sit areask tank0

if ai O thentheset is linearlyindependent

A vectorspacehas a basis whichofthedimensionofV andallowsustogenerate any elementofV

If x ̅ i h.in is abasisofVthen jet ai'ssuchthat

Erain

Asetof vectorsEy In generates a subspaceof Vwith a j t.tamjmaitki h.im
if man propersubspace

A normed Vectorspace is one w̅ a mappingfromVto IRS.t.ae R xJ̅ev
N ncñ 0 e n 2 O iff x ̅ 0

Nii n ai lathie

Niii natg nail nly

Examples If o Exit are

n a d x ̅ol 14sept an

n i d2,0 Maxfails and

All 3satisfy NiNii Nii In addition some norms satisfythe parallelgramrule

Niv Entity n x ̅g 2 na 2neg
n n satisfy Niv by n doesnot



If we have all 4 propretiesthen we can define a bilinear symmetric innerproduct

x ̅ I n a ylj In x ̅ j
bilinear itby z a x ̅ E big.z

ECan'tby a Ei b Eg
Symmetry x ̅g gx ̅
Positive definite x ̅ x2̅0and x ̅ x ̅0 off x0̅

nle onRnistheEuclideanNorm RrwiththeEuclideannormisdenotedE

A pseudonorm is anormthatviolatesN Niii thisoccursinspecialrelativity WhatistheHistoryofthePsuedoNorm

51.6AlgebraofSquare Matrices

AlineartransformationTon avectorspaceis amapfromVontoVwhichislinear
Thaiby atea btly

If i 1 n is abasisforVthen I Eare
and Tti T aiéiqqff.gg

theTei canbeexpressedasTijes

WhereT.isarethecomponentsoftransformatTandareoftenwritteninmatrixform

If I I arvectorsandBis amatrixthen EBI ABig Stronglyencouragetowriteinthisformandnotswitchindices
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Newtons lawcan beexpressedwithoutanycoordinates Themanifold is loccally like IR

example

time

2.1 Definitionofa Manifold

Idea Anysmooth curve surfacevolume anydimension looks locally likeIN

A setofpoints M is a manifold if

L E ii iii it Eisenman

In this framework thereis no measureoflengthon M Distance is a global proprietyandwewilldiscusthis
later
Points in M looklike R not unless wehaveametric

in

whatis the
difference

eco Rn pennen
map

chart
at

a a are
Entifordinates ofin

There canbemultiple chartsata givenpoint ona manifold thesechartmustoverlap

aNTFisparacompact fit Q.in stehEon.maIoets.aifnatmean
areaQi'spicturessamew̅closedsetsM R

anglepersued is possible metric

L.itiniiie.iiiiii a continuousmotion and coronetranston

y y x x i b.sn

Wesay Ep are C related ifallthepartialderivativesoforderk arecontinuous



Ifall PeM forallchartsinM isCrelatedthen M is a C manifold

Weassume M is a C manifold differentiable

Examples R is a n differentiablemanifold

If idethyffaphrofthfofhar.is
anypointinRhmapstoitself

52.2Thesphereis a Manifold

Thetwosphere in deffybysjyfndonsffedby A onesphere is acircle

Wecan map smallneighbourhoods of Pto a disc in IR this mapdoesnotperservelength orangles
Another way to do this

myp.gg

to use sphericalcoordinates

a

I
themaphas problem at

so T the line ismappedto apoint
0 0 this line getsmappedto 271

A solution restricted to o a's 02 2 21 yields achart for almosttheentire sphere

Another chartcouldbe asimilar systembut where 0 0 atthe equator andthengofrom to

Assignmentwill have a Qonstereographicprojects

92.3otherexamplesofManifolds

Aset M that canbe parameterized continuously is a manifold and its dimension isthenumberofindepedent
Parameters

Setofrotations of aRigidobjectof3D Dimension3 EulerAngles

All pure boosts Lorentz transformations is amanifoldofdimension
The parameters arethecomponentsofvelocity

Nparticles in3D 3Ndimensionsforthepositionand3NforVelocitythisisamanifoldofdim6N

An algebraic different quantify ora
dependentvariableyintermsofanindep vara



Avectorspace VoverR is a manifold Suppose visndimwithbasis in Anyyevcanbewrittenas

wehave a mapping gcal
himÉoRn Itturnsoutthatvis identicalisomorphictoRn

Ly4sept9m
52.5 curves

Thou fi c if ttaTotmoTpiiistd anntht.inrEisman ac n ci aan adif this.fr
Diffeomorphism's in a specializedcaseofahomeomorphism asubsetsubspace

A differentiable manifold is a set M suchthat all pointsin M have an opensetthathasa map
diffeomorphism to an opensetin Rn wesay ithas dimension N

Acurve is a differentiable mapsay8 Friman opentsetofIR into M

8 a b M or 8H 84 EM

We parameterizethecurve withlambda.X

Two curves withthesameimage butdifferent parameterizations are different Quote

Suppose theimageofthecurve is intheopenset 0 withchart 6 Iff ftp.ffonme
4 O IR x xn

Weobtain a coordinate representationofthe curve

I 4 8 IRL R x's an

H x a a a a 8121 2 821

RnÉ8R a Rich in
at b R

8 is differentiable if M is a C'smanifold



2.6 Functions

Afunction say f on Mis a smoothmapfrom M to R

F M IR or an flaler

with chart 4 0 IR x's an we get a coordinate representationoff
F fop R R

OR a f x a

Q.CI Itfg

a
fi

_up

E fop R x uh IR

On a manifold we alwayshave coordinatesbut we don'talways mention them explicitly

2.7 Vectors andVectorFeild

In a manifold nomagnitudefor a vector

Vectors typically have a direction andmagnitude In our definition we willhaveadirection
but no magnitude because we onlyhave alocaldescption about eachpoint

Suppose we have a curve 8 thatpasses throughthe point PeM with coordinates x
is 1 n and also a smoothfunctionforM

Y a b M
f M IR

we can evaluate f on thecurve
g for foy o for To8 ab IR

OR
AH f x x xD

OR
f x x ab R



Ifana and8 are both differentiable so isg we can differentiate gw.ro t a usin

this isa directional fy E that Iperator
did inattentive

If mfInthey ftp.nisgenffreffnalarue
derivative of f in the directionof 4 Theseare

fu eesthafnateacharetanfaehfeny.ec it has an infinite number an infinite number

a b

R

Example

At the point P kilo consider the curve

8 4 8 a da a constants

the tangent is

diff a

Now consider a different curve at P

É yo8 n u b ma x a b constants

the tangent vector is 11 Zubita a

Thecurves 8 and 82 have the same tangentvectorat P

It can beshown that tangents to the curve form a vectorspace Wecanshow all the
properties of a vectorspace are satisfied but we only show closure

Proof Suppose a b e IR and we have curves 8 d and 22 m
From 8
From 8 d

m i



Consider the linear Superpositionof the two
a b m IF a bff

we introduce a new parameter suchthat

a b E
Tah'stag vectorclosure whichmeans the scalar sum of 2 tangent vectors isalso

Infis Yormfonsiderbasite tangent Iff gaff the
coordinate lines x we get

In our equations for are the components in the vector space

ffiignmhfw.tt
ue onthursdays 5

PrfY definediff ab R 9 Ii Ii where 1 arethecomponentsof

With Coordinates x weget coordinate lines Eni whichforma basis

Since there is a 1 to1 correspondence betweenthetangentvectors at Pandthespaceofpartialderivatives
at P we useki to denote the tangentvectorstothecurve

52.8 Basis vectorsandbasisvector fields

Eggy ftp.Pinmanifold Mhasa tangentspacedenotedbyTp orTpM whichis a vectorspace w̅samedim

We need a linearlyindependentvectorsinTpM toformabasis Acoordinate system x atPhas a
coordinate basis of Fei ofTPMfor all PeM
Suppose et it in is another basisofTpm Anyvectorin TPMsay w̅can bewrittenas

w̅ EEV i Viej

v Vi are thecoordinates w r t faiand et Thesecoordinatesarefunctionson M

Note In i is a superscript butappears inthe denominator is considered asubscript

For vectors we usesubscripts forthebasisandsuperscriptsforcoordinates

A vector is anobjectthatlives in Tpm Avectorfieldaremappings that defines avector forall PEM



Avectorfield is diff'able if its coordinates are differentiable Thebasis arelinearly indepent if a are
propercoordinates

52.9 FiberBundles

Amanifold M witha tangentspace ToMcanbecombined to form a tangent BundeTM

10 example

m ti.fi E itix
The tangentBande is a 2Dspace ingeneral2n is alsoamanifold Wecandefine a projection togetthepoint
fromthe tangent bundle The tangent bundle is anexample of afiberbundle

52.12 VectorFeildsandintegralcurves

Ines c it In n an.se k tit've nasty associate Inti
this is an integral curve

Vector fields correspond to a system offirstorderODESandthe integral curveisthe solution

Pe ifwewehavewrfesmotficpY.FI anf.IE wwithgefmaPgnysftsm
with coordinates xi

Th

Vila's xn

If U is C i then ason tothe system which is the Integral curves

Example

yIn

y

If you differentiate the first

4 1 Harmonic Oscillator

i

5213 Exponentiation of the operator

Suppose we have an analytic smooth manifold C with coordinates a a along integral curves



then I are analytic functions ofa and we can Taylor Expand We Taylor expandExi aboutdo
a E lad 4 tt f t

I t t 2 x

exp EG a la THISISNOTATION

We havethe exponentiation of theoperator whichis shorthandfortheabove expression

Note exp e et et't this is trying to giveus asenseof distance

Lie brackets and noncoordinate basis

Suppose is a coordinate systemand is a basis of vectorfields

we know thatany nlinearlyindependent vectors formabasis butcan a basicform acoordinatesystem No

By construction commute forall i j

Ii Fi Ii 0
Suppose we have w̅ and w̅ fm we canshowthattheyneednotalways commute

E E E
EEwiki W W

V VWZ.fi

W WV fi

tn Vi w

Ifthis is non zero then In form a non coordinate basis

the lie braketof w̅ andw̅ fu is f fu



kc6 sep26 G.ttrustshowtheyare inverses a tianya.fmaf so
AI marks very latest nextthursday

2.14Lie brackets noncoordinate basis

The Lie bracket is definedas the comutatoroftwovectors fu
Geometric interpretation

consider a coordinatebasis where 1 2 0

The integral curve ofFi that are tangent to

4 1 and 4 O

a a c and a constant

Integral curves of32 are constant 22 2 constant

EE

iff ᵈ
Locally thingscanbecurvy buton a cureonly I parameterchanges

Along each integralcurve all the ai's are constant exceptforonethatchanges

Next consider a noncoordinate basis T w̅ with 1 740

On the integralcurvesof d increases and µcan also change

fii.fi
Suppose we start a Pand move Da and thenΔM E to endupatA

i fiii
We can also start at P move suit then D and endup at β
Find the approximate distance between At B

1ˢᵗ path first moveto R x R exp a p



Then to A
ai A exp Edm exp It a p

Similarity we movefrom Pto Q to B
x B exp Etl exp ItIn ni p

The difference betweenthetwois

a B x A exp exp fu a
p

Assignment 24 b

E O E

w̅w̅ are in a coordinate basis iff it w̅ 0 w̅ andw̅ are vectorfields

32.16 One forms covectors

Tpm is thespaceoftangentvectors at Pete Aoneform is a Linear real valued functionof vectors
w̅ V at IR

Thespaceof oneforms is the dual spacetothetangentspaceTpM

Suppose w̅ is a oneform and w̅ is avectorbothatP then wehavean operation
w̅ T EIR

One forms are linearwith ab eR Eis a oneform

w̅ att bw̅ aw̅ V bw̅Cw̅

law T a NIV

w̅ E V w̅ V 8V

Ip c Proof smenfyfedthafp.mnforms atP forms avectorspace this is called the d

Vectors are linear real valued functions ofoneforms andhenceTPM isthedualofTpM
T p M TpM this is alwaysthecase



Example aw̅ b8 t a I
Notation WCT or TCO w̅V7 these are all called contraction

Vectors are sometimes called contravariant
iim's c.ieiirsi'are covariant

coordinateshavesubscripts

52.17 Examples of Oneforms

example in rsa ims

ab Y n cab y ax byER

52.18 diracdelta function

co functions are an abelian groupunder addition and a vectorspaceunder multiplication

The dualspace of the functions are oneforms and calleddistributions

S x f x fix f x doe flo

52.19The gradient and the pictorialrepresentation ofa oneform

Avector field has a unique vector at every point Afieldofoneform has aunique onefo
at every point

Differentiabily of oneforms will bedetermined in termsof diff'abitly of Vectors andfunctions

ATangent Bundle TM contains MeTPM A cotangentBundle contains T Mcontains Me
Both are fiberbundles

we will show that the gradient of f
ited If is a oneform anddefined as

If 1 Ii ER
gradient existsinDualspace andtakes in fromthe tangentspace



dafigumeantaffy.int offpMandthe
contraction with 9 yields thedirectional derivativeof f a

Check If is a oneform
If a b m add b u f byabovedefinition

a If bfu a If bdfEu
wesee If is a linearoperator onvectors

If at Pis computedfrom faiatP and thisforms thecomponents of It

Note Ii has alowerindex opposite to be basis of vectors



Leot.frIi.atn92.21 Basis

Any n linearly independent one forms are abasis of TpM cotangentspace

Given a basis ofTpM say Ei it in this induces a dualbasis to TpM w̅ i 1 n

If TeTpm then thedualbasis w̅ isdefinedby
w̅ w̅ Vi T Vie

and
ice Si kroneker delta

Weshow that w̅ are linearly underpent and form a basis ofTpM
Consider any one form of

qV qC.E.ve
Linear

Vigiej
Define q qlej to be the components of q on the dual basis to ej
Also g i q w̅ V q gw̅

Note compare with T Viej

7h f m f are abasis sincethere are n ofthen and we cangenerate any q with

It follows

q t qVi
this is a contraction

If é is a basis ofTPM points U Y then w̅ is a basis TpM points UCM

The coordinate basis x onU defines a natural vectorfield a baisofTPM

and this defines a natural basis of oneforms In ateachpoint

With this notation da f



2.21 IndexNotation

Components of vectors V
componentsof oneforms Wj
Vectorbasis E
Oneformbasis w̅
Coordinate basis 1forms Int

Vectors

Example w̅ 5 Vw Vw einstein's summation Notation

An indexthat occurs twice is summedover ifone is asubscript andonis a superscript

Example w̅ w IX wjIx

Examples with nosum Viv vico Viwi
affated L

Peated nosubscripts

92.22 Tensor andTensorfields

we build on vectors and 1 forms to get tensors operator

PEM If rndmfe.pe Ni is a linearmap that takes N 1forms and N'vectors

Example F is a 3 tensor

we can write this as

F w̅ E Tw̅
Since it is Linear in all arguments

F at b5,5 w̅ w̅
a F w̅ E w̅ w̅ b F T E Iw̅

F w̅ E art 5 w̅ aF w̅ E w̅w̅ bF w̅ F J w̅



2.23 Examples ofTensors

47 5sS 949 µ LpYet 99
are 6 tensors Row vectors are one forms or

2.24 Components ofTensors andthe outerproduct

Consider 2 Vectors T w̅ Wecan form a 8 Tensor with the outer product

éi w̅ air
Tim w̅

tensorproduct

If pq are one forms we can form a Q tensor

p q w̅ w̅ p t q w̅
chosen Yartiable

is the outerdirect tensor product

The outer product ofan nm tensor and an Htensor is a tensoroforder LIK
The componentsofa tensor are the values it takes when ithas basisvectors and1form
as arguments

Example If S is a 3 tensor then on the basis I and w̅ hascomponents

Siskem S w̅ w̅ w̅ ée em



Lec8at3m
225 Contractions

w̅ is a tensor and is writtenas Viwj
Consider examples with

Sin is a z tensor

pen as a 8 tensor

These can be contracted in varius ways

s Finna a C
tensor

gijr.pl is a tensor

In general the 2above differ unless Pissymetric

Propriety Contractions are independent of the basis

IDEAofproof

q t qV seeassignment2 for the details

Consider A a tensorandB a 9 tensor AcontractionofAandB is A Bjr
C where Cis a tensor

Consider applied to E andV C E Tl C OUK

A BjrO V
OABrV componentsto operators

Aside BCE 5 w̅ BenÑew̅mé V'énÑ 0 A w̅ w̅ Béjér V
usingtensors

eara
awi.fiB éj VélBen é omen Vat

s A E B Ej T

Blast w̅ Bj p A E Ble t w̅

CCE Back

I
completelyindependentfrombasis



Aside BLE 5 w̅ Benidorm é VE w̅

Bem w̅ é come VP i

BjpVpis
8

Recall w̅ é gig

This is independentof basis andindices

92.26 BasisTransformations

Recall Atensor oftypeNN is a linear function that takes N 1 forms andN Vectors as arguments

this definition is modern Previously tensors were defined as howcomponentschange under
a change of Basis

ftp.PEM suggest I I are bases toIpm There is a uneary transformation matrix I

1 is nonsingular

Recall Oneforms have abasisdefinedby Toiler fire

We will determine howw̅ basis transforms To dothis wemultiply thedefinition by Aj

Aj w̅ En15.8k
w̅ 1kgEn hij
wi

above

w̅ Ej Aj

we define the Inverseofhis to be g

1 A 8

1 1 8

we multiple the previous egn by 1k to get 14 w̅ E 1 1 j 8

1 ej 8g wk'céj

The functions infront ofE must beequal
1 w w̅ transformswithAK



Compare with

Ej ftp.ei éy transformswithAj

1 forms transform with the inverseof 1 we can also transform coordinates

5 1 jWILT A vi

and Similarly

9Cén qchk.es 1k E vqj

Summary
Viand i

Transformwith j

q and éi transformwithAir

Its because of these differencethat
é Viej are basis independent

Vector Coordinates Superscripts arecontravariant since they transforms oposite How

There basis transforms

1 form coordinates subscripts arecovariant since they transform like ei

Coordinate Transformations

Suppose UCM has coordinates xi it in Introducenew coordinates gi i 1 n

yj fer xn j 1 sn

yi fi yes

The coordinate Thisformation is has anonzero determinant in U

ALL PEV can be described with x or y has coordinatvectorbasis

and



These mustbe related by

4.52 fi
Compare with what we saw previously

éj Aje explictexpressionforlamba

Aig 2 covariant

Similarity 1 fi contravariant

since 8



Lec9Oct5,2023_

2.27 Tensor operations on components

Given a tensor T withcomponents t on a basis thefollowing isbasis invariant

at or at j
This can be denoted as T at

TheOuterProduct is also basis invariant

A B A B
or

A B A B e

depth offffbasisoff whingufferations on
components produces componentsthatare thetensor

Addition

ScalarMultiplication

Outer Products

Contractions

2.28 Functions andScalars

A scalar is a 8 tensor which is afunction on M independentofthebasis

Example V8 is ascalar

V is not ascalar

2.29 The metric tensor on a vector space

An innerproduct is a rulethat associates a number with 2vectors and itis a 9 tensor

It is also reffered to as ametric tensor g
barnotone



g V w̅ g w̅ F w̅J

g is a symmetric tensor withcomponents

gi 9 E Ej

We will require that g has an inverse

If gig Sij then it is theEuclidean metric andthe vector space is Euclideanspace

Given any gig we can change to a newbasis say Ej suchthat

gig 1 Ny gke

We can picka basis where themetric tensor is diagonal and onlyhas 1 or 1 asenteries

Theconvention is to list the t's first thentheH's

gig diag 1 1,1 1

This is written in an orthonormalbasis

The sum trace ofthese elements is thesignature

We classify the metric tensor as

positive definite if all 1s

negative definite if all 1s

indefinite if wehavebothI'sand1s

Example Minkowski metric inspecialrelativity

1 1 1 1 or 1 1 1 1

This is indefinite

Euclidean Space is called Cartesian with

Gi Si or 9 I



the minkowski metric has the Lorentz basis

7 diag 1,11,1

A transformation matrix from one Lorentz basis to another canbewritten as

2 rind

The metric tensors maps vectors to 1 forms

Ñ gCV
Blank

In terms of components

Vi Vlé

g w̅Ei
g Viejéi

Vig Ejei
Viggi

gigVi
Symmetry ingig

The inverse matrix gig is called g with

gigi Sin or
t
g giii.gg

This yields
gkiV

grig V

fjV
This recovers what we had before



Summary Vi gijV
and

grivi

A 8 tensorA can map to a i tensor

Aij gypA

This can be mapped to Q tensor

Aej gemAmj

This can be inverted A gigmAem

Skip the proof

This is called Index raisingand lowering with a metric tensor there is muchlessdiff
difference between

N and µ and Nfl

Hence why we often refer tothem as tensors of order Nt N

InaEuclidean vector space a cartesian basis is gig 9

fmp no difference between superscripts and subscripts and hence we often onlyuse

52.30 The metric tensor field on a manifold

A metric tensor 9 on a manifold is a E symmetric tensor and has aninverseat ev

point

For all points in themanifold g serves as ametric on TPM and hasall the
propreties mentioned previously but there's more

Using go we can define distanceandcurvature



we canuse g to define lengthon M

Suppose a curve has a tangent vector J If
then

de do die Tdd Tdd
V w̅ dd

g V Fda
dana's grident

If g is positive definite then dl ispositive and

de gw̅ I d

If g is in definite then curves can have
dl positive space like or negative timelike

dl is the proper distance forspacelikecurves and the propertime

fortime like curves

2.31 Special Relativity

R with ametric with signature 2 is a manifold called Minkowski space time from
special relativity

We can define coordinates Dt BxDyDZ then

Δs C At Dx t Sy 1372

C is thespeedof light

Define et x x y Z then

Δs Δx DX D2 Δx ̅
or Δs N ΔxDxβ

This is a psuedo Norm and satisfies



8 am

Theseare what we need to define an innerproduct

V w̅ 2 VWβ

Midterm covers lec 1 9 but none of the special
Relativity

To study make sure you understand all the lectures

and assignments soln's on Sunday

Francis will give a description of questions to expect

Will post sample formula Sheet on Monday



telectia
3.1 Intro How avector field maps a manifold to_itself
Recall A vector field w̅ induces an Integral curve

view
all possible coordinates

Propreties ofintegralcurves to cover the entiremanifold

a unique curve througheach Per child 19me get
These curves fill the manifold m n manifold

fade

If M is n dimensional then thesetof integral curves are In 1 dimensional
Curves like this that fill the manifold is acongruence
These integral Curves provide a naturalmapping from M toM alongw̅ If Tis
CP then the mapping is diffeomorphic

Such a mapping is lie dragging

I m

93.2 Lie dragging a function

Suppose f is a function on a manifold M

m

andQareonthesameCurve

wedefine FCP FI iH itgtiimpromon
along an integralcurve

Δ is verysmall but could be big



If fQ f's P then f is invariant under the map
If f is invariant Δd then it is saidto be liedragged

If function f that is lie dragged must satisfy 0

3.3 Lie dragging a Vectorfield

A vector field can be defined by a congruence of curves for which it is tangent

We now show how to lie drag a vectorfield

1,23,4areIntegral curvesof

ff f ftp.fhffflhatfhlgmeyqisofoffu

B

I 2 3 4

The points along Alm congruence are dragged along It to theCurve A A need not be a congrue
of a

A defines a new congruencewithparameter µg
This has a tangent vectorfield Eng which is the imageof under lie dragging

In generalmi congruence differs from a congruence If theyare thesame then ft everywhere

Wesay a vectorfieldand congruence are invariant underthe map

If it is invariant Ad then the curvesaresaidto be lie dragged bydad

A
Hang

A
dam

2 3

I the distances are infinitesemal and if stretches fromP to R onthe curveA then

Ing Streches from Qto S on A



If is lie draged then B conincides with A and

Fta F a

This implies In 0
A vector field is lie dragged iff Ia 0

3.4 Lie derivative

The derivative ofa scalar valued function IR is

him fixth foe newton's quotient

Tfistan P
tw mehand fmpygemths.ie

function at different points and divide bythe

We don't always have distance but wehavetheparameterA
along 2 Integral curves

14 0
p t.fmgnraggafngdifferent points

function

method evaluate f at do Ad f dot D and drag it backto do
Evaluate f at do
Find the difference byDa and takethelimitas AN 0

For define f suchthat d o hence do f dotDa

Hence we get

47 f do fdo
Dd

lying tooth f do If
The lie derivative of a function is L f T f
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resist
The lie derivativeofa function fM IR along a vectorfield w̅ is computed using Lie dragging

Recall f P f's Q and f d f 2012

If we 12 Sd and to do ΔA then

f do f do Dd

f do sa Fsado

Then the Liederivative of falong w̅ is

Lpfgo 1 f do fao

gg.fi g fao

Lvf Vf no

component form Lif 4 27
this generalizestoanydifferentiable manifold

Most textbook's use pushback pullforwards

t.com
IneIe itof ctor field consider w̅ In and I andconsider an arbitraryfunction f

At do anddoSo we knowthatthe lie derivative is

Lif fu Oct

Laf a so fudots Ulf a so
Now we can liedrag do A to do with IT do Oldotsa Ims
With UH I 0 because ofwhatfrancissaidin lecture transcrible later

we taylor expand EMIf

III f us ftp.f Egf 0 a

If wesolve forthefirsttermontheRHS

Test III f a A BUTInes



1T ffmla.tn Fgf
TaylorExpandthis

Termthangeorder becauseLuisa i 0

Hisf El tn IED a 010

wedefine the lie
derivatigy ftpgg faacaoj d f

I 1 la E a to
Aside

Hisf III 1 1 1 a 010

Substitute

d f ski fat fi f toga
Inm be adividedbya

it f f f or i i
anti

This is equivalent tothe directional derivative of it inthe direction of w̅

3.5 Lie derivative of a oneform

We can determine the liederivative ofa 1form intermsoftheLie derivativeof a functionandVectorfield

The lie derivative ofaOneform can becomputed asfollows

Li w̅W w̅w
Libertzrule is ProductRule

If w̅ w̅Ld

Li low Loww̅ w̅ how fgathha.fistiitit e
This method extends tothe outerproductof tensors

Li A B LrA B AXLE B

Lf Tcw̅ it hot w̅ w̅ There w̅ t tea 2am fora components

ofthetensor

This is the ProductorLeibniz Rule



3.6 Submanifold

The idea is that asubmanifolds of amanifoldM is asubsetofrewhichis itselfa manifold

Ex R is a manifold asmoothsurface is asubmanifold
a smoothcurve isa submanifold

A m dimensional submanifold 8ofa n dimensional is asubsetofM withthe propriety that in some neighbourhoodof

PeSCM there exists acoordinatesystem forM inwhich thepointsofScanbewrittenas
nm O

Solns to thesystemofDEs y filx an with it e and with coordinates K This is asubmanifold
with coordinates g yn s x

Suppose PeSCM with dims m anddimm n Acurvein 5 through Pis acurve in bothM S
Through P

Tps Tangentspace at Pins dimm

TpM Tangentspace atPinM dimn

Tps is a vectorsubspace ofTPM anda submanifold

A tangent vectorat P is both in TpsandTpM

Tp S cotangentspace atPins
Tp M cotangentspace atPinM

Any w̅ eTpM yields a w̅ TpS if we restrictthe domain toTps insteadofTPM
However ÑtTps doesnotyield a unique w̅ inTpM
Summary TeTps isalso a vector in Tpm and w̅ eTpMisalsoaone form in TpS



Lpw̅ vrkrwitwrfi.tt
In general for ti I

between

CL in vrfertiih.ie Triin.ie rvi T _rue Iv T farU't tt roeV

53.7 Frobenius Thm VectorFieldVersion

Suppose a coordinate patchof S M has coordinates ya a 1 in with basis vectors

3ya for vector fields ons with Zyaby 0 a b since it is a coordinatebasis

It canbeshownthat ingeneralfor thelied
btrack

ofanyofthese twovector fields yields a re

field tangentto 5

The next theoremsays something aboutthesubmanifold if we know a propriety of the Lie
bracket of a Vector Field

Frobenius theorem VectorFieldVersion

If a setofmsmooth vector feilds in Uc have lie brackets which is a linear

combinations of the m vectorfield thenthe integral curvesof the fields.megesfmpne

form a familyofsubmanifolds
fimplications

Dimof the submanifold is m

Each point in U is on one andonly on submanifold Thisfamilyofsubmanifold is a
foiliation of U and fills U likethe congruence curve do Eachsubmanifoldis a leaf
3.9 AnExample the generation of82

Consider a based vectorin sphericalcoordinates called Eg yéx Ey
Using our notion this becomes

9 23 Iz 9m94 zmmafetf.in
operator



Similarity
I 2 y z

Ty R r 2

It can be shown
ex f It
ly Iz Ix
EsTx Ty

checking ly 2 y z R r 2 a e z 2 y z

you y Iz
Since EliTyI have lie brackets thatare a linearcombination oftheset Frobenius theorem yields integral
curves that form a submanifold

Since we have 3 vector fields we mightthink the dimensionof this setis3 it turnsoutthedimis

To see this consider r y't2 2

We can show that or is the gradient of
I ta Ir ly drill 0

check Ar Ix Ix r
2 983 V y2I

B
perftors f f afeqthze.ro

Since the gradients Tre02the text In tangentspace dim2

We can consider Ir to be asetofsurfaces of constantr s SinceéxTy I are orthogonal

to the gradient they must all lie in the tangent whichis 2dim tyty.li is only
dimension 2

3.10 Invariance

ie derivatives are often used to showthat a tensor is invariant in a direction

Wesay T is invariant under a vectorfield if

Lp T O
T could be meatifcalatefield for PEofapartical

Vectors w̅ underwhicht is invariant are important



3.11 killingvector fields

Metric tensor can be invariant with respect to a vector field These Vectorfields are

Important

A killingvector field is a vectorfield w̅ suchthat

L i g 0

From excersize3.4 youdeduce that Log ij vkfekgijtgrjbxivktgirfx.it 0

For a killing vector field

Pick coordinates such that the integral curve are in the a direction then

vi 8
then the above simplifies

Log is 23gi o
Therefore the metric tensor is invariant with respect to the killing Vector

Example Consider R in the different coordinates

Euclideanspace gij Si
This form is independent of x y zand by areall killing vectors

Spherical coordinates grr fr.fr I
900 r

gap 03 r sinO
andonly diagonal

isnonzero

91 is independent of hence tz is a aany new
t 91

s 9 tensor

it can beshown that di andtyare also killing vectors

these 6 killing vectors byfz.es tytzare theonlykilling vectors possible
3.12 killingVectors and conserved quantities inpartical dynamics

Inclassical mechanics it follow that

if the PE function is axially symmetric thenthe angular
momentum is conserved



If the PE is independent of say the the componentofmomentis conse

these symmetries in the PEenergy function giverise to conserved quantities

However if another symmetry is found in PE function does thatmean something else isconserved

Conserved quantities dont just require the PE is invariant went to a variable but

we also require that is a killing vector

Idea Newton's 2ⁿᵈ Law

my JI or mji J or mi g
Any invariance of this equation that both f and g are invariant went coordinate
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claim most abstract concepts have been introduced Chapter4 is on differential forms

54 Differential forms

Now we develop calculusofdifferentialforms or oftencalled exteriorcalculus or differentiable manifolds

A the algebraic2 integral calculusofforms

54.1 Defn of Volume andthe geometric role ofdifferential forms

we nowstudy a class of tensors that enable us to definevolume on elements without an innerproduct

A pair of non parallel vectors in euclidean space defines an infinitesmial area

1111 I

In our definition ofareavolume we donot needto know the lengthofthevector orthe angle between

Consider a 2D manifold and suppose wehave two linearly independent infinitesmial vectors theyform
parratelogram

Wewant tofind thearea between a5 Ourdefinition ofarea must satisfythe followingalso

a a area a5 areatae area a bte

I
since areal takes 2 vectors and yields anumber it must be a 8 tensor

Observe area a a 0 forall x ̅

Excersize 4.1 If B is a E tensor with BCAñ 0 w̅ then BCw̅ w̅ B w̅w̅
proof BCE w̅ It w̅ 0

B I BCWa Bca w̅ BÑw̅ o

BCWw̅ BCW w̅



Note thatthe areafunction mustsatisfythis antisymmetry propriety
Area is not non negative

Recall for Linear algebra we canfind area using

aree detYY Antisymetric

54.2 Notationand definitions for antisymmetric tensors

A Q tensor is antisymetric if

ñCñw̅ WCTñI

A 3 tensor is antisymetric if it changessigns when we exchange any 2 elements

WCUw̅ w̅ OCTñ w̅
Ñ w̅w̅ I
w̅ VWT

Given any tensor wecan buildan antisymmetric versionof it

Ex If w̅ a E tensor then

w̅A AV w̅CñJ WCTñ

this is the anti
symmetric part of w̅

If P is a b tensor then

PACK I w̅ ñCÉÉÑ jCÑÑñ pcÑÉE pinyia pcttÑ
Normalizing 5 itw̅
bynumberofterms

Pa is the antisymmetricpartof5
Notations

Dalij wig wji Way ftp.smdgotafantisymmetric

Palijk Pijk Piri Pki Paji Pgr Ping Plija
i k denotes a completely antisymmetric set of indicies

Notation we use to denot a complety antisymetric partofa tensor

example T is only at tensor T is the antisymmetric version ofT



Also we say a oneform is antisymmetric

Property For an n dimensional vector space a completely antisymmetric op tensor penhas atmost

ff Inpit nchooser independentcomponents

why be antisymmetric

aL am

ex in 1123 n 3 E3 C 3 C

4.3 Differential forms

A p form P22 is a completely antisymmetric tensor of type 8
A one form is a 9 tensor by convention anti symmetric

A zeroform is a 8 tensor scalar

P is the degree

Using outerproduct cantake 2 19 forms to yield a E tensor

A wedge product takes two one forms and yields a 2 form

aim

pig p q got 9 8It symmetric
gnp.iq p 809

Proprety If 5 1 1 in is a basis ofTPM and w̅ is the dual basis ofTpM

then WinÑ5jk l n is a basisforthevector space of twoforms

We can build twoforms in a similarway

81 qrf pig if pigar
pique p got forop top q fogof qopor forge

Wecan define the wedge product ofa p formand a g form

54.4 Manipulating differentialforms

Commutation rule ofform Pdq gap 1



idea if p Win not pfactors

q w̅kn 15h gfactors

pig win nu ncwkn rate
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ttManipulationof differentialforms

Commutation rule Png C1 gap

InteriorProduct Contractionofavectorwithaform

If I is a pform andw̅ is avectorthen 2 requires p vectors

Erigumentp dignu
textbooksnotation

inca α nu othertextbooksnotation

This is an innerproduct

Example

if winwin no Viwin no viwin.nu

4.5 Restrictionstoforms

PPosearguwm.ms you
pace ofa Vector field V A Pform 2 is a8 tensor that is completely antisymmetric and

EEE
The restrictionofx ̅ tothesubspaceWC is thesame pform butwiththedomain restricted to w

in x ̅ Y x ̅ x ̅ T where x ̅ YareinW

If m dimwap then Ilwis0

If m p then Iwhas one component CPP 1
Restricteda form is called sectioning

A form is annulled bya Vector space if its restriction to it vanishes

54.6 Fieldsofforms

A field of pforms on manifold M givesa pform points onthe manifold M

Asubmanifold SCM picks a subspace Tps forall Pes and wedefine the restriction ofthe



p form x ̅ toS by restricting atP to Tps

54.7 Handedness and orientiability

In a n dimensional manifold there is a 1dimensional space ofn forms Ch1

Suppose that w̅ is an n form field that wecan use tofind theVolume If we have

e En is a vectorbasisofTPM that is Linearly Independent

It follows that ÑLei En to iff 0 atp

Aside w̅
wi.e.nw.nwn.e.nwnconsiderwc

n.ge Win w̅'nw̅n tw eteh én

wi.nkwicepnwie.sn when

wink

w̅ separates the vectorbasesinto 2classes

Wce in 70 righthand

Wce én40 lefthand

This separation is uniquetoany nform

this mayfoldmynp.gg'd to beorientable if we define the handedness consistently callpositive orallnegative

Example 1H is orientable

Mobius isnot orientable

we only consider orientable manifold

54.8 Volumes and integration on Oriented Manifolds

Aset of n linearly independent vectors infinitesimal or an ndimmanifold can define a

nonzerovolume thisforms in ndim a parallelepiped

Integration a function f on M requires multiply f by an infinitesimal Volumethen adding

thisup over all ofM



Suppose w̅ is a n form onan openset U in M with coordinates

x's an

Since n forms at PeM form a1D Vectorspace There exists afunction f x a suchthat

w̅ fIx's 1 Ix
We integrate ore Uby first dividing U into regions cells sparedby n tuples ofVectors

ax ax gin

where Da'sare infinitesimal

The Integralof f overa regionis f multipliedby the following

AxDXDan Ix's nIx 9131 Dan n

The integral of f overa cellis writtenas

feefix'ssanjana w

locallynear

Addover allthecells andwe set theIntegral

in fÉ ffexi.n.ndxi.am
c.iriatihiieptehient

Example in 20 withcoordinates d n the above yields

So Sfc a Indu calculusofmanifold

I fixuldddu calculusof1R

check transformation of coordinate aµ xy

Is Incxy f Ixt dy

In ˢIx Ty
we build the form

IanIn EIx Ix f txt dy

Ix I IfIndy fgf.intxt ffIfiy



L Indy
Ixady Jacobian ofthe transformation

For a n dimensional manifold we can integrate an n form toget a nonzeroresult

For a submanifold oforderp we can integrate a p form to get a nonzeroresult



TÉf francis is out of town Therefore i will not record sound

54.9 N vectors dualsandthesymbol Eink

A completely antisymmetric tensoris a pvector On a n dimensional manifold this has dim Cip

The following spaces allhavethe same dimension

p forms EY
n p forms

size p hp p l p 2 p3
p vectors dim 3 3 1

np vectors

we could use the metric
Finish É map a 8 tensor to a 8 tensor and barkwards

It can beshown that sincethe metrictensoris symmetric this process preserves antisymmetry

Even without a metric the volume nform w̅ yields a mapping from p vectors to inp forms
thismap is the dual map or the hodgestar map not_mentioned in textbook

Suppose T is a 2vectorwithcomponents

Tink Tlink

with w̅ we can defin a tensor F suchthat

Aj.ae wi.innet
ingform T.fmTeam

indepentofcoordinates

Notation A T andsay that A isthe dual of t wir t w̅
This is invertable and therefore we can bring p forms to n p vectors

Examples consider E in termsofcartesian coordinates

w̅ I are both vectors
In cartesian coordinates theelementsof

allocated
_forms areequal bcof8

g a or Urgi U SigU
and

g t or vi gig.us f.jp



Typically wewrite theseas
for1forms

with w̅ and I we canusethewedge tofind the following 2 form

Uni a Ix a Ix 4 Ix3 a VIx t VIx VIx

y.fifjE
fifth tuna a viii ix a ix iii iii ix as

UsV1Ix Ix UVdis Ix u v guysg
ofsymmetry

Switching some bases

UnV UV2 424Ix'ndx

424 4312 IxnIx
UV UV dinIx Coefficents aresimilarto crossproduct

Find the dualof thisexpression

ñÑ Wise InM Fran I in thisisme

Iwin tinT wise Int

Was Int was Int

Was Int wasUni

CuV2 Up IxnIx Usk UV inIx aug6V Ixndx UV UV IxeIx

434 4V dinIx uzv 43kIxnÑx

av2Uav nIx Usb uV2 inti uv 4V3 x nIx

Howdowe find thedual ofthe 2forms

Note that
I never

mean if iii E Iii
oof wijr.FI Apr12form

An 1 withbasis Ix n Ix



or A32 1 withbasis x eÑx

Int Uv2UY 3 4203 43V2 UV UM 842

Compare with the cross product

if 1 I
inD IxF Int Axt

this result is uniqueto R

Themap betwe t and T is invertiable

Levi Civita Symbols

t.in in

E ii j i

example I I EijkUv

B the differential calculusofform and it applications

Singlevariable Calculus States

f df f b fla

we want to derive a derivative operatorthat reduces tothis inthesimplecasebut is more general

54.14 Theexterior derivative

If M is a ID manifold I OFÉm i form It willagreewithetheabove
If I is a pforma B I areg forms we require

i B 8 TB 8 Distributive

2 I Inf II C1PINIB Antiderivation

3 ICT2 0



These 3properties uniquely define

I is called theexteriorderivative

Property ii is almost Leibnizbut there is an extra 1P to bring across the p form

Property iii seems odd butis essential

ex if I is afunction then If is a oneformwith component Ii
If has components of theform 22 Butthismust be a 2form and since it

must be antisymmetric itmust be0

54.15 Notation for derivatives

Partial derivatives Fyi f 1stderivative

3 Vj 1ˢᵗderivativeofa tensor

f in 2ⁿᵈ Derivative

Recall that a partial derivative is not a tensor operation in general whichassignmentwentoverthis

example V's neednotbe thatftp.fttff.mn
ordinate dependent

If f 1 form and a tensoroperation

w̅ I UiUi j Vu I a tensoroperator

EachtermontheRHS isnot atensoroperatorbutthewhole RHS is

Excerse 4.14 on anassignment

a fdg If1dg with3ʳᵈ property means 11 Idg 0
b if f f di.is Ix n ndx is a pform
the TE di Ix'sIxin nix
and

Ia ki pH Kdi j
or 2 ring ptl 24 j k



ampies ofexterior derivatives

We can revisit some old friends with anew perspective

of a 1 formñ in3D

ratified
niita.in a iiiiii if may

91,2 Ixndx a IxnÑx t 92,1Ixnix taz IxnÑx a Ñx'ndxt aszÑxndx

Cas and dirty Car 93.1 Iii Ix can andI It
fffifgjhf.athf

Consider thedual or hodge star wedge

To 93,2 92,3 12113 91,3 931 31Ix Can a z Ix nÑx
From before Ix n 13 Ix Ñx 2 Ix n Ix 3

Hence Ian 93,2 92,3 19,393 2 92,1 9,2 3 Looks like the care

or
I Eija an Eijkanj

The RHS is the curlsince I a Eijkans
summary D cure in3Dwhenapplied to 1forms

why.ie tenthof ftp.ea.isf1lied
scalar it

First take thedualofavectorthen I
Suppose a is a vectorfield

a a a 2 a 3 a 81 a 2 a 3

a Ixadx a Ix nIx a Ix n Ix
OnlyI valuefor each j thatwould makethe

P
I a a Ix IxnI a éx ñ 3 Ix a Ix and

weds no

a's a a Tx'ndxÑ
Note Ñ F a w̅ divergence

If f Ix gradient



54.17 Integrability conditions forPDEs

consider the system of 2PDEs
More Interesed inwhen a solutionexistsIf gexy andfyhing

why If ftp.fpafymaashifold
Further define ax g anday h and thenwe can

f aT.IT
notation Event

A coordinate independent versionofthisis

If whyx ̅ ithought axay wasavector

This holds because ffix Eydry gixthiy
If f is asolnthen it mustfollowthat

It IT 0

In componentform this becomes

Ññ I gÑx hdy

ITIndi off y
2 0blcof.gg

ietg

Fx Hy1Ix1dy 0 Greens theorem

or ftp.t tfEd
9211 91,2 0 orasi.itfwneredoe thisnotation comefrom

This condition is necessary and laterwe willshow it is sufficient for asolutiontoexist

54.18 Exact forms

Observe if D If theÑJ ÑÑβ0
If 52 0 then I is closed

If I IB then I isexact
clearly an exact form is closed Itcanbeshown that any closedformis exact



4.20 Liederivatives offorms

If tois a p form then

C

Ideaof proof
caseI w̅is a 0form w̅ f

LHS LTw̅ Lif T f If
RHSI doesnotmake sense this termis ignored wecant have a functionactingon avectorfield

RHS2 IWW TELCO II Ix V
IW T Vf Ix

Vif d

Case2 is a1form widx oneformnotation

RHS ICOT WiVi w Vi Tx
RHS2 IWF J wD T

Wi di n Ix I whichformuladoes this use

Wi IX Ix Tx Ix vk
Taisation

ofA to outerproduct

Wi Ix UK k Ix Ixi UK n Txt distributing v r

W a i
8h where didthe cross go

RHS will Ix coi Vi Ix ViIx

iiiI p
www.ixi vii.is

Wi V w V Ix Low
Canfullyproveusing induction
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54.21 Liederivatives andExteriorderivative commute

oohoo stokesthereon

hm L and I commute

wewillprovethisfor a oneform or nform

oof we need a formulafrom 4.20

Lr w̅ I w̅LED Iv i Him

Gigestate's
face

but replace w̅ with w̅ trueforntl exactform

a w̅.ir II i ii i s

rom the first equation we know

Iw̅ V Low Ñ w̅CVD
ubstitute intotheRHSofthe previousequation

F do ILLroI.com in I find
Ihrw̅ commutes

54.22 Stokesthm

Weshowthattheexteriorderivative is the inverseof integration in particular

do w̅ Differentfromw̅weuse

Wecan integrate nforms over n dimension andwe can integrate n tforms over n t dimenson

aye
m ftp.orthfa boundary is n t dimensonial The boundary is theexteriorofU and why

ssume Uis a smooth orientablevolumeon Mthatis connected then 24 isa submanifoldofM also is avect
fieldonM



Suppose U Uco isa regionon M with boundary 24 2410 andUct isthe liedraggedregionalong3
for 2am

gun
dimi

e um
f dim x 2dm

partialtodenote doundary

ppp

EYE

is thearea between Uco and UC whichisdim2

or SUCE 4 E 4101

Tofindthe change ofan integralfromUco to U t wecomputethefollowing

face Suco face

nform

w̅ is an n form the n form thatgives us volume antisymmetric and 8 tensor
Suppose Vis acoordinate patch of 2410 with coordinates

If we Lie drag 2410 along 3 adistanceof then wehave coordinates t x2 Kn

such
5 n

n suchsideofthecylinder
2410 V10

apr
08

parthasapatch theE coordinate patchgives us away to
describethe boundaryofthe

cylinder

5 is nowhere tangent to 2410

We investigate the integral of SUCHand thenextendthisto SULE

We introduce w̅ f x xnIx's nI

f Ek 1 then the Integral over SVCE is

this is like
fdx dx dxRiemannsums

f f 0 andx of
smallerthan ᵗ

unearizing since eat

Efu w̅5 t this is achange Calculusonmanifold



Note 3 by design

w̅ f x E Ix't n Ix
f 0 xn Ix't nIx

nd f fax tflo OE

Summary Saucew̅ t w̅5 d t e

Now consider

facew̅ facew̅ funw̅

I w̅
Fromfirstegn

I SUCE SVC whichis true ifeat then

facew̅ tf w̅3 t

facew̅ Sauna
auto

at using cinerization we can approximate the Integrand ontheLHS using

w̅ E L w̅ OE Infray
doestget wherethiscomesfrom

Sub into LHS

fact w̅ fu E Lswt Oct
fact w̅ JunoLjw̅

But theformula forhisw̅ yields

Jun15w̅ fun I w̅ 5 d5
ahhhh I form

I w̅5



f we combine our formula's we set

facew̅ fun I w̅51 fun w̅ 3

Fromabove befitzwa

efine I w̅5 isw̅ and get

II fun stokestheorem



tht
physiosNEXTWEEK

4.22 Stokes theorem

Recall
face w̅ Jaco 5

Justification

LHS We integrate w̅ Inform overthenvolumeUCE

To obtain the RHS we taylorexpand w̅ at UCE around UCO

Aside f x ̅ 5 f x 5 I fix OF
use this idea to appox w̅

Sincethe lie derivative is the directional derivative

w̅
act w̅

y EL w̅ no Oct

If you plug this into the LHS

TEfacew̅ w̅ tLzw̅ 1 oct

funL w̅ small stuff

ample in E consider IT I jetor
we apply and obtain

Id I α Ix α2Ix f isa productrule goingon nextassignment comesoutfridayNov17

21,2Ix n Ix 22 Ix'ndx

2am anIx'ndx

Stokes theorem can bewrittenas

f Is faut

Su a dining



Wecan rewritethis in terms of regular integrals

2 2 dxdy fc2az d7

8 t.de the
p.ci dating thretium

54.23 Gauss theorem and thedefnof divergence

Recall Stokes thm can be writtena

faud or fjeans g ay
treatyneed

Suppose Ix Ixn nix isit because Ix
then w̅5 3 I Q methegativecomefrom

Wecompute oftheaboveand get

91015 I IxnIx's Ix t Tintin nix t 3 Ix's ndx

I 815 w̅

Wedefine the w̅ divergence of as diver5 w̅ I w̅L

If we use components suchthat 24 is a surfaceofconstant then the restriction ofw̅ 5 to24 is

w̅ 5 3121 1Ix

or
Ix E521 Ada

In general if it is a 1form normal to theboundaryofU 24 whichmeansthat ñLz O 5 tangent to26

and if is an in 1 form with

w̅ ñrJ

then
w̅ z ñ7 2



Therefore the original form of stokes them becomes

fudiva w̅ ñ512

with 2 restricted to 24and ñnI w̅

In componentform this becomes

dx 2ind x Gauss divergence
thereonin 112

54.25 Differentialforms andDifferentialEquations

Consider the DE ff fex.gl
we often rewrite it as dy fixgd

whats the connectionbetweenthetwo

If Mis a 2D manifold with coordinates xy then weconsiderthe following

dy fixgIx 0 this is inspiration

where f is a function on M

Suppose w̅ is a vector at PEMwith components 1 FCP

Consider TyÉ Fy 1 f P FP

Ix T Ix 1 FCP 1

his implies dy fIx J 0 Tyco FILAV f P f O

olns to the DES define a submanifold ofM whose tangent addhe form

Submanifolds that annul the 1form are solutions to thiscanbe generalized to nforms with Frobenius thm

Question Given a DE whatarethe equivalentform

example 4 twin wois constant Harmonic oscillator

or woy and If won System of 1ˢᵗ Order Equations



or
Woy0 anddy wok 0

The 1 forms toconsider are

I Ix woyIt

β By wordt

Finding submanifolds that annul theseforms is equivalent to solving DES

The manifold is 3D with coordinates xy z and the Solution is ID

4.26 Frobenius theorem differentialformsversion

The set of forms To at PEM define a subspace of Vectors TpsCTpM eachofwhich
annuls Bi i e Forall VeTps Bi V 0 i b sn

The set Tps is called annihilator of
The complete ideal consists of all the forms at PwhoserestrictiontoTpsvannishes
Note if 8 is a form atP then 81Bi iso when restrictedto Tps and therefore 1B isinthe
complete ideal

A complete ideal has abasis 2 that generates the ideal ie

the complete idealof 2 isthe sameasthe complete idealof 5
Allof this extends from vectors to vectorfields



Lec20Novaste
54.26 Frobenius theorem

Bi definesa subspace Tps TPM eachofwhich annulsBi
Tetps then Bict 0 Hit sn

Tps is the annihilator of β
The complete ideal consists ofalltheforms whos restrictionto Tps vanishes

Note If I is a form then InBi is 0 when restricted to Tps InBi is in the complete
ideal Address

2 is closed ifeach Jj is in the complete ideal generated by 2

Aside Acomplete ideal has a basis x ̅ that generates ideal

Frobenius Theorem

Suppose 2 i1 im is a linearly independent set of 1form fields sina.afyyw.IE setUcm where

Mis an n dimensionalmanifold Theset2 is closed Iff functions pigQj 1,51 m such that

Ii PigIQ a array

Idea In general to solve DEs we want tofindsolutions to Ii03 TheSolution to thissetof equations
by Qj constant

This set of Q are solutionto the equations Ii 0 and EachQ defineds an mdimensional Submanifol

ofM and its tangent vectors annul IQj and also x ̅

example suppose x ̅ If this satisfied theabove with P and f Q fexists iff II 0

Ii a91
independent setof 1forms then anyform8 is in the

55 Applications to Physics

55 A Thermodynamics

55.1 Simple systems

Consider a onecomponent fluidwhere the conservation of energy dictatesthat

go Psu I istÉw ofthermodynamics
valuation

changes pathdependent



where U is the internalenergy

SQheat absorbed

PSV work donebythefluid

PV pressure andvolume assuming900

This law can be written in terms of 1forms on a 2Dmanifold withcoordinates V U
cord

then P if Function on M that is the equationofstate
On the RHS it would makesense to write it as

PIV IU
Since Iv and Jafar one

firm's
we deduce that theLHS TQis a 1 form aswell

Question is 8Q IQ is it an exactoneform If yes then IIQ 0 and wededuce

ICQ I PIV 2

That reduces to If
isignments

we cansimplifythis

f It 0

fu duna 0

But this can onlybetrue if 0 this is typically thecase

In general Q doesnot exist and we can't write 5Q as IQ
However since 5Q is a 1form but not exact in 2 space Ñ56 is a2 form This 2form

is in the complete ideal of SQhence5Qis closed

We can use Frobenius theorem and deduce that TCVu and SCV u suchthat

8Q T Is this looks like the2ⁿ Ldaw ofThermaldynamics

With this choice the first law becomes

TIS PIV IU
5.2 Maxwellandother mathematical identities

Apply to the above equation



I TIS PIV IT
Assumption I presume Tcsv and P S V

partial is proportional totheoneform
in the gradient calculation

ITA IS IPAIV

aunts Isair

1 Ivids

f one of Maxwell's indentities

Assumption 2 SCTv and PCTV

sub into TIS I PIV
Itn IS ITIIV

ITIIV ITnIv

Assumption Divide egn byT and apply the you canobtain

T Ff P 2 assume PCTV and UCTV

TIS PIV Ill qq.IN
Dividingby

ftp.dfttIIIISI FIV ICtIU
0 Pitt ICPAIV ItsJut III 0

aItnIv FAINTED.IT iIr ITAIU

It.at EIItN ftp.ffi

ITAI



From section52.30 of the Geometryof Physics byFrankel

In classical Mechanics we describe a system using generalized coordinates

g q compactly called q
These form an n dimensionmanifold M that we call configuration space

The Lagrangian is afunction ofq and q where 1 which also has n coordinates

These 2n coordinates 9,9 completely specify the state

The g are generalized velocities and are in TpMTherefore gg is in the

tangent bundle TM

The Lagrangian 419,9 is amap L TM IR

For Hamiltonian mechanics we need the generalized momenta

P qq If one form ie in co tangentspace
subscript means p is in cotangentspace

to build the Hamiltonian we need the Lagrangian and a transformation

gg qp

his is not simply changing coordinates

To see this suppose we have a change in generalized coordinates

qu qu

This can be described as

qu quiqu
prime denotes new

coordinates

I
Compare this with 1 j V hisVJ contravariant vectorsdothis



The p's transform as follows

pi 1591 Iii
p P 3 this.fi inthisthecov

faitgenfIpaceomparewithhis 3

g is in the tangentspace Vector

p is in the cotangentspace oneform

Hence computing p is not only changing variables but is really amap

p TM T M rffhtwehanda.fi be Mbut

T M is the phasespace qp
The Hamiltonian is amap H S.t

H TM IR Hlqp

The Lagrangian Llgg T qg Ulg

where the KE is T gg q qfÉ
Example Suppose we have 2masses in ID

M R and TM R

T km19 malg
freed

with gig 18m

Example If wehave a mass in2D

T mly g cartesian

withgig18h Involved of
T m intro gig L polarcoordinates



In general p 3 gig gq

I can beused todefine a Riemannia metric

49,97 gigqq.iq

Tinetic Energy is the length squaredofthe velocity vector

he generalized momenta p is the covariant version of the generalized velocity

Example 1 p mg and Pz m29

n general p gij.gs and q g p

55.4 Hamiltonian VectorFields

Given a Lagrangian we can obtainthe equations of motion fromthe EulerLagrange Equations

1 2

Hamiltonian

qp Pq L

Hamiltons equs
92 i 3

Phasespace is the tangent bundle T M which Includes MandTpM

On T M which is a manifold we define a 2 form

pcanbe
calledM w̅ Iq1Ip area inphasespace

Take a curve on T M ofthe form

q ft pglt
Which is a solution to Hamilton's equations The tangent vector tothe curve is

1819 7basisvectors



Theorem If A is a tangent vector tothe solution curvethen Lj 5 0

proof From a formula 14.67

Liw̅ ILOCK IEO
The 2nd term is 0 since w̅is a 2formona 2dim Manifold

Low I w̅ñ

It Iq1Ñp U

I IqIp Ip Iq a
IqaIp1M

oneform

coefficentof1form
at U ftp.tgfp which yields

IqA f and IpA q
how I ftp.gdq

never f and 9 2
9 from Hamiltions egn

Lvw̅ I If Iq Ip
I IH 0

the area in phasespace is conserved along solns to Hamiltons equations

Vector field with Lt w̅ 0 is a Hamiltonian vectorfield It is tangent tothe curves in phasespa

the system is conservative H is constantalong Solns

L H If 92 i

ftp3q 2Iq p
0



pandq are not unique PandQ are canonical if IqaIp IPAIQ

This requires

3 38 p q
example Q p andP q
check Ig 4T I

5.6 Mapbetween vectors and 1forms byw̅

w̅ IqnÑp canbeused like themetric tensorto convert vectors to forms and viceversa Suppose it is a

vector field on M then Ñ WCT IqaIpV

Iq Ip Ip0dg V
IqV Ip IpoIq

f T V q UP then
y Ip vrjqwmcomtpien.skfesn'this lowertheindices

V2Iq V'Ipecan write T Wiju anddeduce that

wig and w

Using w we can find T given w̅

5.7 Poisson Bracket

Say f g are functions on Mand define

x ̅ f df and x ̅ dg
these are the vector versions ofthe gradient Fromabove

If IqIq IpIp



en
at Eqp

Tg dg for44

e can thendefine thePoisson bracket

f.gs

Xf Xi
If Ig Ifxg̅

To evaluate this weget

fg EgIq IpIp 8722985
fig q p poisson bracket

side IqEq I

Iqlp 0

the above expression is in termsofcoordinates Theexpression independent ofcoordinates is

fig dfdg

5.8 Many particle systems sympleticforms

n 3D with no constraints and Nparticles wehave 6N dim'l phase space

he phase space in generalcanbe saidto be2N wheren is thenumberof generalizedcoordinates

then
Symplecticw̅ IqthIpa Form

the Phase space is a symplectic Manifold



5.9 Linear Dynamical systems the symplectic Innerproduct and conserval quantities

to begin consider the following hamiltonian

H
p
TABPAPB t VABqtqB

here we assume TABandVAB are symmetric If not we use thefact the productof
asymetric part and asymmetricfunction is0
r Symplicity assume TAB andVAB are constant

amilton's equations

3 VABGB

If 2 TAB

Check

q p VaBqᵗqβ

ftp.VABSIqB V VABqt8

VerqB 4Vac9A
veβqβ

Vta A B

f Ya is avector with components qui Pasa A1 n and72is a vector w̅ components gin Dana lion

en their symplectic productis

eye y gutpart 912Pat

F Tenand are both solutions then the symplectic innerproduct is independentof time

w̅Ya 9inPaa 9121Pina

1 pen get8 14pena areas a



ing
Hamilton's equs next

w̅ T Ta TABPengPasa VABqciqczB TABpcppcnatvabqczpqc.tt o

f TABandVAB are independent time then it followthatif Yu is a soln then so is d

s motivates defining the canonical energy as ECCI w̅ 4 I

can be determined that Ec Y H evaluated at T

ECLY 10 7 x ̅ atPcna 972Pcna

Is TABpasPasa t Vas9Paqt
So the independence of A wart yields the conservation of 4 or the total MechanicalEnergy

Other conserved quantities

In general TAB and VAB can dependon the coordinates x

If A suchthat LaTAB O LyVap then there are conserved quantities associated to w̅
hiscanyield expressionsforLinearMomentum orangularmoment conservation

Noethers theorem

Exam Content



Leave

55.11Rewriting Maxwell's equations in differential forms
5C electromagnetism

We can nondimensionalize maxwell's equations insuchawaythat C no to to get
A B 2 41J AmperesLaw

III Faraday'shaw

c FB 0
am

g I Rcharge

ewill rewrite these using a metric and IThe relativistic invariantform requires the Faraday 2form

man
Howis this a 2 fo

en JF a HDmanifold Since IF is a 3form on a 40Manifold there are
different equations CG 4

wecan write F Fardm we compute

jp.fm IonImado
is observed that IF o iff Finoa a

Fixyz Fxyz Faz Faxy 0

B
ftpyxBy.y 0ggnDiv of

Magneticfield0

Fagin Fxg.tt Eyex Fexy 0

Bz t Eyx Ex 0 the z equationof eqnB

Figzie Fyzie Fay Fty o

Bx Ezy Egz o the eqnin B



Fez Fxz.ttFat Fixz 0

Byt Ezx Exz 0 the yegnof B

the other equationsweneed the special relativistic metric

gun f f Lorentzian metric

8001

s allows us tofind the 2 vector F 9mg Fab g F g
ote 9 diag 1 1,1 1

is iii t i
t.ie i ii

E i
e final for eqn's

arie
F 47J where JT p J J x y z

Wecheck 4 different equations

Ftt Fix FY 4hIt

Exx Egg Eziz Http eqn D

FY Fit Fly F e 4 5

Ext Bzy Byz 47J thisis the eqn in A



O F o Fbi FY FY 41J

Eyt Bz Bx z 4 58 the yegn inA

F Fat F F 475

Ezt By x Bay 4 5 The Zegn in A

bserve that IFis coordinate independent However FY 4T is coordinate dependent

even a basis ofthe tangent space E then we candefine thevolume 4formas

w̅ ItsÑxiÑyiÑz
e define F w̅ F or F no wanoF dualor Hodgestar

xt we determine thecomponents of this

F ex Was F

Iwyz F 4ff.fminm
yztx ytzx ytxzt tyxz xyz

E tx Bx

O F ty Wast F waxty F Wxt FÉ5

Zxty xzty xtzy txzy xyz coefficent

F ty By

F z BE

F xy Ez

F z Ey

Flyz Ex



Emf EE
e exterior derivative of this is

F F no r In Initio
e define J w̅ 5 and apply w̅ to the egn F 4 5

w̅ FMg w̅ 4 5

we can writethis as

I F 41 J

nd A F O

55.13 Vector Potential

If IF 0 then F is closed and since it is a 2form I al form A suchthat

F IF atleast locally

is the vector potential



dec 24th
D Dynamics of a perfect fluid
5.15 Role of Lie derivatives

A perfect fluid idealized is one that conserves certain proprieties

Mass

Entropy

Vorticity will explain Txvelocity

today we will express the equations of afluid using exterior calculus

55.16 the Comoving time derivative

The conservation ofmass continuity eqn is

If F pt
things convering denistyincreases

Onan assignment we found

LACEY L.LIg.rm
where Ix stye Ix

e operator Et Lv computes the total rate of change following the flow

onsider the motion of afluid parcel If the change happens over a shorttime

at I makesthefollowing approximationvalid
en the motion is from

xyz t x Vdtytv.at 2 Vdt at

thedifference between the two is

V v9V21 at It is a 4 vector



n the formulation the total rate of change following the flowi

La w̅ Lo w̅ spacetime

version

Where w̅ is a4 vector and it wouldneed to be decomposed on the RHS

5It Egns ofMotion

A perfect fluid conserved entropy If S is the entropy thenthe egnis

1083 f 8 0 thermodynamics

e conservation of Linear momentum Newton's2ndlaw can bewrittenas

ftV V Vit Lp P 0

I taqu
hressure

gratuity

is pressure

is the gravitationalpotential

i is the Velocity

s egn is a mess as wehave both superscriptsandsubscripts added to eachotherBad

is not a 1 tensor
Partialderivativesdon'ttransformasvectors

sume we have a metric
does metricrelatetoa distancefen

his allows us to converttheVector T to the one formT

Y g J yeildsVi

starmeans emptyin this case

rewrite the nonlinear term we need the operator

Lo P



find out what this term looks like consider

eqn3.14intextbook

Lgv V Vit Vi V
canshowusing FV0

V Vi t Vjr

V b hit IV if V2 TLV

momentum equation in coordinate independent formbecomes

2083 theÑ fÑp ICE v2 0
Almost like bernouth's eqn

5.18 Conservation of Vorticity

the vorticity of a fluidwith VelocityT is

FxT curlofvelocity

we have seen that this can be written as

TV curl Ivector

IT cure 2 form

get the vorticity equation we apply to the equation

It Lr If f TerIP
ase p dp then IpaIP 0

Ze Lp If 0 Vorticity is
conserved followingtheflow



se 2 p p pis then IpnÑP 0 but

ISnIpnÑP 0 Manifold is2D sp

pply to our equation lof3

E Lo IS 0

f we take IS a the vorticity egn then

Isi E LAIT Israeli

1 Isidt 0 Ertels thereon

IsnIV is a 3 form By Mass conservation w̅ is conserved these are both 3forms a

on a3Dmanifold must be linearly relates

ISnIV αpw̅ α is a function andmust exist

Since Isn IT and put is conserved it follows that α is consered

the α D

aim α JS Ext

oof take the dualof

Isn IV αpw̅
LisaIV Leo



ote Asn IV S Ix n E Va Ixindxk

Eii s Vu IxinIxnix

comparing the coefficent of w̅ we get

2 JSTxt Ertel Potentialvorticity


